Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474382

RESUMO

Glypicans (Glps) are a family of heparan sulphate proteoglycans that are attached to the outer plasma membrane leaflet of the producing cell by a glycosylphosphatidylinositol anchor. Glps are involved in the regulation of many signalling pathways, including those that regulate the activities of Wnts, Hedgehog (Hh), Fibroblast Growth Factors (FGFs), and Bone Morphogenetic Proteins (BMPs), among others. In the Hh-signalling pathway, Glps have been shown to be essential for ligand transport and the formation of Hh gradients over long distances, for the maintenance of Hh levels in the extracellular matrix, and for unimpaired ligand reception in distant recipient cells. Recently, two mechanistic models have been proposed to explain how Hh can form the signalling gradient and how Glps may contribute to it. In this review, we describe the structure, biochemistry, and metabolism of Glps and their interactions with different components of the Hh-signalling pathway that are important for the release, transport, and reception of Hh.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Glipicanas/metabolismo , Proteínas de Drosophila/metabolismo , Ligantes , Proteínas Hedgehog/metabolismo , Proteoglicanas de Heparan Sulfato
2.
Nat Commun ; 13(1): 5647, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163184

RESUMO

During embryonic development, cell-cell communication is crucial to coordinate cell behavior, especially in the generation of differentiation patterns via morphogen gradients. Morphogens are signaling molecules secreted by a source of cells that elicit concentration-dependent responses in target cells. For several morphogens, cell-cell contact via filopodia-like-structures (cytonemes) has been proposed as a mechanism for their gradient formation. Despite of the advances on cytoneme signaling, little is known about how cytonemes navigate through the extracellular matrix and how they orient to find their target. For the Hedgehog (Hh) signaling pathway in Drosophila, Hh co-receptor and adhesion protein Interference hedgehog (Ihog) and the glypicans Dally and Dally-like-protein (Dlp) interact affecting the cytoneme behavior. Here, we describe that differences in the cytoneme stabilization and orientation depend on the relative levels of Ihog and glypicans, suggesting a mechanism for cytoneme guidance. Furthermore, we have developed a mathematical model to study and corroborate this cytoneme guiding mechanism.


Assuntos
Proteínas de Drosophila , Proteínas Hedgehog , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Glipicanas/metabolismo , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia
3.
Curr Top Dev Biol ; 150: 1-24, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35817500

RESUMO

The function of Hedgehog (Hh) as a morphogen results from its long-distance distribution from producing to neighboring receiving cells within the developing tissue. This signal distribution enables, for example, the formation of a concentration gradient eliciting distinct cellular responses that will give rise to spatial patterning. Hh is a lipid modified protein and its dispersion is better guaranteed through cytonemes, cell protrusions that allow direct cell membrane contact and signal transfer at a distance. Hh and its receptor Patched (Ptc) meet at cytoneme contacts in a way that reminds synapses. Both Hh and Ptc require a recycling process prior to presentation in cytonemes. Increasing research on the role of cytonemes in Hh signaling is revealing cellular mechanisms that link signal transport through dynamic cytonemes with concurrent regulation of cell adhesion. The equilibrium between these two processes is being unveiled as crucial to both patterned morphogen distribution and signal transfer. In addition, these discoveries are pushing forward our understanding of the role of extracellular elements involved in the Hh pathway, such as the Hh coreceptors Ihog and Boi and the glypicans Dally and Dally-like protein (Dlp).


Assuntos
Proteínas de Drosophila , Proteínas Hedgehog , Animais , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia
4.
PLoS Comput Biol ; 17(8): e1009245, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343167

RESUMO

Morphogen gradients are crucial for the development of organisms. The biochemical properties of many morphogens prevent their extracellular free diffusion, indicating the need of an active mechanism for transport. The involvement of filopodial structures (cytonemes) has been proposed for morphogen signaling. Here, we describe an in silico model based on the main general features of cytoneme-meditated gradient formation and its implementation into Cytomorph, an open software tool. We have tested the spatial and temporal adaptability of our model quantifying Hedgehog (Hh) gradient formation in two Drosophila tissues. Cytomorph is able to reproduce the gradient and explain the different scaling between the two epithelia. After experimental validation, we studied the predicted impact of a range of features such as length, size, density, dynamics and contact behavior of cytonemes on Hh morphogen distribution. Our results illustrate Cytomorph as an adaptive tool to test different morphogen gradients and to generate hypotheses that are difficult to study experimentally.


Assuntos
Modelos Biológicos , Morfogênese/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/fisiologia , Biologia Computacional , Simulação por Computador , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pseudópodes/metabolismo , Transdução de Sinais , Software , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
5.
Elife ; 102021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34355694

RESUMO

The conserved family of Hedgehog (Hh) signaling proteins plays a key role in cell-cell communication in development, tissue repair, and cancer progression, inducing distinct concentration-dependent responses in target cells located at short and long distances. One simple mechanism for long distance dispersal of the lipid modified Hh is the direct contact between cell membranes through filopodia-like structures known as cytonemes. Here we have analyzed in Drosophila the interaction between the glypicans Dally and Dally-like protein, necessary for Hh signaling, and the adhesion molecules and Hh coreceptors Ihog and Boi. We describe that glypicans are required to maintain the levels of Ihog, but not of Boi. We also show that the overexpression of Ihog, but not of Boi, regulates cytoneme dynamics through their interaction with glypicans, the Ihog fibronectin III domains being essential for this interaction. Our data suggest that the regulation of glypicans over Hh signaling is specifically given by their interaction with Ihog in cytonemes. Contrary to previous data, we also show that there is no redundancy of Ihog and Boi functions in Hh gradient formation, being Ihog, but not of Boi, essential for the long-range gradient.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila/metabolismo , Glipicanas/metabolismo , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Comunicação Celular , Drosophila melanogaster , Fibronectinas/metabolismo , Microscopia de Fluorescência/métodos , Estrutura Terciária de Proteína , Transdução de Sinais
6.
Inorg Chem ; 60(12): 8898-8907, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34096276

RESUMO

An original cooperative photoredox catalytic system, [RuII(trpy)(bpy)(H2O)][3,3'-Co(1,2-C2B9H11)2]2 (C4; trpy = terpyridine and bpy = bipyridine), has been synthesized. In this system, the photoredox metallacarborane catalyst [3,3'-Co(1,2-C2B9H11)2]- ([1]-) and the oxidation catalyst [RuII(trpy)(bpy)(H2O)]2+ (C2') are linked by noncovalent interactions and not through covalent bonds. The noncovalent interactions to a large degree persist even after water dissolution. This represents a step ahead in cooperativity avoiding costly covalent bonding. Recrystallization of C4 in acetonitrile leads to the substitution of water by the acetonitrile ligand and the formation of complex [RuII(trpy)(bpy)(CH3CN)][3,3'-Co(1,2-C2B9H11)2]2 (C5), structurally characterized. A significant electronic coupling between C2' and [1]- was first sensed in electrochemical studies in water. The CoIV/III redox couple in water differed by 170 mV when [1]- had Na+ as a cation versus when the ruthenium complex was the cation. This cooperative system leads to an efficient catalyst for the photooxidation of alcohols in water, through a proton-coupled electron-transfer process. We have highlighted the capacity of C4 to perform as an excellent cooperative photoredox catalyst in the photooxidation of alcohols in water at room temperature under UV irradiation, using 0.005 mol % catalyst. A high turnover number (TON = 20000) has been observed. The hybrid system C4 displays a better catalytic performance than the separated mixtures of C2' and Na[1], with the same concentrations and ratios of Ru/Co, proving the history relevance of the photocatalyst. Cooperative systems with this type of interaction have not been described and represent a step forward in getting cooperativity avoiding costly covalent bonding. A possible mechanism has been proposed.

7.
ACS Appl Mater Interfaces ; 12(50): 56372-56384, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33284598

RESUMO

A successful homogeneous photoredox catalyst has been fruitfully heterogenized on magnetic nanoparticles (MNPs) coated with a silica layer, keeping intact its homogeneous catalytic properties but gaining others due to the easy magnetic separation and recyclability. The amine-terminated magnetic silica nanoparticles linked noncovalently to H[3,3'-Co(1,2-C2B9H11)2]- (H[1]), termed MSNPs-NH2@H[1], are highly stable and do not produce any leakage of the photoredox catalyst H[1] in water. The magnetite MNPs were coated with SiO2 to provide colloidal stability and silanol groups to be tethered to amine-containing units. These were the MSNPs-NH2 on which was anchored, in water, the cobaltabis(dicarbollide) complex H[1] to obtain MSNPs-NH2@H[1]. Both MSNPs-NH2 and MSNPs-NH2@H[1] were evaluated to study the morphology, characterization, and colloidal stability of the MNPs produced. The heterogeneous MSNP-NH2@H[1] system was studied for the photooxidation of alcohols, such as 1-phenylethanol, 1-hexanol, 1,6-hexanediol, or cyclohexanol among others, using catalyst loads of 0.1 and 0.01 mol %. Surfactants were introduced to prevent the aggregation of MNPs, and cetyl trimethyl ammonium chloride was chosen as a surfactant. This provided adequate stability, without hampering quick magnetic separation. The results proved that the catalysis could be speeded up if aggregation was prevented. The recyclability of the catalytic system was demonstrated by performing 12 runs of the MSNPs-NH2@H[1] system, each one without loss of selectivity and yield. The cobaltabis(dicarbollide) catalyst supported on silica-coated magnetite nanoparticles has proven to be a robust, efficient, and easily reusable system for the photooxidation of alcohols in water, resulting in a green and sustainable heterogeneous catalytic system.

8.
Dev Cell ; 54(5): 572-573, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32931749

RESUMO

Lipidated morphogens can spread within tissues to regulate cell fate during development or tissue repair. How these insoluble molecules reach distant target cells remains unclear. Reporting in Nature, McGough et al. (2020) reveal the secret of how the cell-surface proteoglycan Dally-like-protein (Dlp) promotes long-range signaling of the palmitoylated morphogen Wingless.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glipicanas , Lipídeos , Asas de Animais/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
9.
EMBO J ; 39(11): e103629, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32311148

RESUMO

Hedgehog (Hh) signal molecules play a fundamental role in development, adult stem cell maintenance and cancer. Hh can signal at a distance, and we have proposed that its graded distribution across Drosophila epithelia is mediated by filopodia-like structures called cytonemes. Hh reception by Patched (Ptc) happens at discrete sites along presenting and receiving cytonemes, reminiscent of synaptic processes. Here, we show that a vesicle fusion mechanism mediated by SNARE proteins is required for Ptc placement at contact sites. Transport of Ptc to these sites requires multivesicular bodies (MVBs) formation via ESCRT machinery, in a manner different to that regulating Ptc/Hh lysosomal degradation after reception. These MVBs include extracellular vesicle (EV) markers and, accordingly, Ptc is detected in the purified exosomal fraction from cultured cells. Blockage of Ptc trafficking and fusion to basolateral membranes result in low levels of Ptc presentation for reception, causing an extended and flattened Hh gradient.


Assuntos
Proteínas de Drosophila/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Hedgehog/metabolismo , Discos Imaginais/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas SNARE/metabolismo , Asas de Animais , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Proteínas Hedgehog/genética , Transporte Proteico , Receptores de Superfície Celular/genética , Proteínas SNARE/genética
10.
Chemistry ; 26(22): 5027-5036, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31999000

RESUMO

Metallacarboranes with the shape of the Greek letter θ, such as [Co(C2 B9 H11 )2 ]- , were tested, for the first time, as efficient photoredox catalysts in the oxidation of aromatic and aliphatic alcohols in water. Their efficiency is linked to their high solubility in water, their high oxidizing power (Co4+/3+ ), and their absence of fluorescence on excitation, among others. In most of the studied examples, using a catalyst load of 0.4 mol % gave high yields of 90-95 % with selectivity greater than 99 %. By reducing the catalyst load to 0.01 mol %, quantitative conversion of reactants to products was achieved, in some cases with greater than 99 % yield, high catalyst efficiency reaching a turnover number of 10 000, and a higher yield with a 45 times lower concentration of catalyst. The metallacarboranes can be recovered easily by precipitation on addition of [NMe4 ]Cl. A pathway for the photoredox-catalyzed oxidation of alcohols is proposed.

11.
Front Cell Dev Biol ; 8: 613583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33511119

RESUMO

Extracellular vesicles (EVs) mediate cell-to-cell crosstalk whose content can induce changes in acceptor cells and their microenvironment. MLP29 cells are mouse liver progenitor cells that release EVs loaded with signaling cues that could affect cell fate. In the current work, we incubated 3T3-L1 mouse fibroblasts with MLP29-derived EVs, and then analyzed changes by proteomics and transcriptomics. Results showed a general downregulation of protein and transcript expression related to proliferative and metabolic routes dependent on TGF-beta. We also observed an increase in the ERBB2 interacting protein (ERBIN) and Cxcl2, together with an induction of ribosome biogenesis and interferon-related response molecules, suggesting the activation of immune system signaling.

12.
Open Biol ; 9(12): 190245, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31847787

RESUMO

Specific neuropeptides regulate in arthropods the shedding of the old cuticle (ecdysis) followed by maturation of the new cuticle. In Drosophila melanogaster, the last ecdysis occurs at eclosion from the pupal case, with a post-eclosion behavioural sequence that leads to wing extension, cuticle stretching and tanning. These events are highly stereotyped and are controlled by a subset of crustacean cardioactive peptide (CCAP) neurons through the expression of the neuropeptide Bursicon (Burs). We have studied the role of the transcription factor Odd-paired (Opa) during the post-eclosion period. We report that opa is expressed in the CCAP neurons of the central nervous system during various steps of the ecdysis process and in peripheral CCAP neurons innerving the larval muscles involved in adult ecdysis. We show that its downregulation alters Burs expression in the CCAP neurons. Ectopic expression of Opa, or the vertebrate homologue Zic2, in the CCAP neurons also affects Burs expression, indicating an evolutionary functional conservation. Finally, our results show that, independently of its role in Burs regulation, Opa prevents death of CCAP neurons during larval development.


Assuntos
Proteínas de Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/genética , Proteínas de Homeodomínio/genética , Muda/genética , Fatores de Transcrição/genética , Animais , Biomarcadores , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Imunofluorescência , Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Larva , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Fenótipo , Fatores de Transcrição/metabolismo
13.
Development ; 146(9)2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068374

RESUMO

During development, specialized cells produce signals that distribute among receiving cells to induce a variety of cellular behaviors and organize tissues. Recent studies have highlighted cytonemes, a type of specialized signaling filopodia that carry ligands and/or receptor complexes, as having a role in signal dispersion. In this Primer, we discuss how the dynamic regulation of cytonemes facilitates signal transfer in complex environments. We assess recent evidence for the mechanisms for cytoneme formation, function and regulation, and postulate that contact between cytoneme membranes promotes signal transfer as a new type of synapse (morphogenetic synapsis). Finally, we reflect on the fundamental unanswered questions related to understanding cytoneme biology.


Assuntos
Membrana Celular/metabolismo , Pseudópodes/metabolismo , Transdução de Sinais/fisiologia , Animais , Comunicação Celular/genética , Comunicação Celular/fisiologia , Membrana Celular/genética , Pareamento Cromossômico/fisiologia , Humanos , Transdução de Sinais/genética
14.
Essays Biochem ; 62(2): 215-223, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29765007

RESUMO

Signalling from cell-to-cell is fundamental for determining differentiation and patterning. This communication can occur between adjacent and distant cells. Extracellular vesicles (EVs) are membrane-based structures thought to facilitate the long-distance movement of signalling molecules. EVs have recently been found to allow the transport of two major developmental signalling pathways: Hedgehog and Wnt. These signalling molecules undergo crucial post-translational lipid modifications, which anchor them to membranes and impede their free release into the extracellular space. Preparation of these ligands in EVs involves intracellular vesicle sorting in an endocytosis-dependent recycling process before secretion. In the present review, we discuss the most recent advances with regard to EV involvement in developmental signalling at a distance. We focus on the role of the protein complexes involved in EV genesis, and provide a comprehensive perspective of the contribution of these complexes to intracellular vesicle sorting of developmental signals for their extracellular secretion, reception and transduction.


Assuntos
Vesículas Extracelulares/metabolismo , Transdução de Sinais , Animais , Humanos , Metabolismo dos Lipídeos
15.
Elife ; 62017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28825565

RESUMO

Morphogens regulate tissue patterning through their distribution in concentration gradients. Emerging research establishes a role for specialized signalling filopodia, or cytonemes, in morphogen dispersion and signalling. Previously we demonstrated that Hedgehog (Hh) morphogen is transported via vesicles along cytonemes emanating from signal-producing cells to form a gradient in Drosophila epithelia. However, the mechanisms for signal reception and transfer are still undefined. Here, we demonstrate that cytonemes protruding from Hh-receiving cells contribute to Hh gradient formation. The canonical Hh receptor Patched is localized in these cellular protrusions and Hh reception takes place in membrane contact sites between Hh-sending and Hh-receiving cytonemes. These two sets of cytonemes have similar dynamics and both fall in two different dynamic behaviours. Furthermore, both the Hh co-receptor Interference hedgehog (Ihog) and the glypicans are critical for this cell-cell cytoneme mediated interaction. These findings suggest that the described contact sites might facilitate morphogen presentation and reception.


Assuntos
Comunicação Celular , Proteínas de Drosophila/metabolismo , Drosophila/citologia , Drosophila/embriologia , Proteínas Hedgehog/metabolismo , Pseudópodes/metabolismo , Animais , Drosophila/metabolismo , Morfogênese , Receptores de Superfície Celular/metabolismo
16.
J Dev Biol ; 4(4)2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29615597

RESUMO

Intercellular communication is a fundamental process for correct tissue development. The mechanism of this process involves, among other things, the production and secretion of signaling molecules by specialized cell types and the capability of these signals to reach the target cells in order to trigger specific responses. Hedgehog (Hh) is one of the best-studied signaling pathways because of its importance during morphogenesis in many organisms. The Hh protein acts as a morphogen, activating its targets at a distance in a concentration-dependent manner. Post-translational modifications of Hh lead to a molecule covalently bond to two lipid moieties. These lipid modifications confer Hh high affinity to lipidic membranes, and intense studies have been carried out to explain its release into the extracellular matrix. This work reviews Hh molecule maturation, the intracellular recycling needed for its secretion and the proposed carriers to explain Hh transportation to the receiving cells. Special focus is placed on the role of specialized filopodia, also named cytonemes, in morphogen transport and gradient formation.

17.
Methods Mol Biol ; 1322: 9-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26179035

RESUMO

The Hedgehog (Hh) signaling pathway is a regulator of patterning, cell migration and axon guidance during development as well as of homeostatic events in adult organs. It is highly conserved from Drosophila to humans. In many contexts during development, Hh appears to function as a morphogen; it spreads from producing cells to trigger concentration dependent responses in target cells, leading to their specification. During production, Hh undergoes two lipid modifications resulting in a highly hydrophobic molecule. The processes that create lipid-modified Hh for release from producing cells and that move it to target cells in a graded manner are complex. While most of the work done trying to explain Hh gradient formation is based on immunohistochemical studies in steady state, in vivo imaging in intact organisms is the finest technique to study gradient formation in real time. Both the wing imaginal disc epithelium and the adult abdominal epidermis of Drosophila are well suited for in vivo imaging. They allow us to observe the behavior of cells and fluorescently labeled proteins, without interfering with development. Here, we describe in vivo imaging methods for these two epithelia, which allowed us to study Hh transport along specialized cytoplasmic protrusions called cytonemes.


Assuntos
Epitélio/metabolismo , Proteínas Hedgehog/metabolismo , Imagem Molecular , Animais , Drosophila , Larva , Imagem Molecular/métodos , Transporte Proteico , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
18.
Methods Mol Biol ; 1322: 19-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26179036

RESUMO

Hedgehog (Hh) molecules act as morphogens directing cell fate during development by activating various target genes in a concentration dependent manner. Hitherto, modeling morphogen gradient formation in multicellular systems has employed linear diffusion, which is very far from physical reality and needs to be replaced by a deeper understanding of nonlinearities. We have developed a novel mathematical approach by applying flux-limited spreading (FLS) to Hh morphogenetic actions. In the new model, the characteristic velocity of propagation of each morphogen is a new key biological parameter. Unlike in linear diffusion models, FLS modeling predicts concentration fronts and correct patterns and cellular responses over time. In addition, FLS considers not only extracellular binding partners influence, but also channels or bridges of information transfer, such as specialized filopodia or cytonemes as a mechanism of Hh transport. We detect and measure morphogen particle velocity in cytonemes in the Drosophila wing imaginal disc. Indeed, this novel approach to morphogen gradient formation can contribute to future research in the field.


Assuntos
Proteínas Hedgehog/metabolismo , Modelos Biológicos , Transdução de Sinais , Animais , Drosophila melanogaster , Microscopia Confocal , Imagem Molecular , Morfogênese , Transporte Proteico , Imagem com Lapso de Tempo , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
19.
PLoS One ; 10(3): e0121239, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793870

RESUMO

In Drosophila, decapentaplegic, which codes for a secreted signaling molecule, is activated by the Hedgehog signaling pathway at the anteroposterior compartment border of the two dorsal primordia; the wing and the haltere imaginal discs. In the wing disc, Decapentaplegic and Hedgehog signaling targets are implicated in cell proliferation and cell survival. However, most of their known targets in the wing disc are not expressed in the haltere disc due to their repression by the Hox gene Ultrabithorax. The T-box gene optomotor-blind escapes this repression in the haltere disc, and therefore is expressed in both the haltere and wing discs. Optomotor-blind is a major player during wing development and its function has been intensely investigated in this tissue, however, its role in haltere development has not been reported so far. Here we show that Optomotor-blind function in the haltere disc differs from that in the wing disc. Unlike its role in the wing, Optomotor-blind does not prevent apoptosis in the haltere but rather limits growth by repressing several Decapentaplegic and Hedgehog targets involved both in wing proliferation and in modulating the spread of morphogens similar to Ultrabithorax function but without disturbing Ultrabithorax expression.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Proteínas com Domínio T/metabolismo , Asas de Animais/crescimento & desenvolvimento , Animais , Apoptose , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fenótipo , Transdução de Sinais , Asas de Animais/metabolismo
20.
Nat Commun ; 5: 5649, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25472772

RESUMO

The Hedgehog signalling pathway is crucial for development, adult stem cell maintenance, cell migration and axon guidance in a wide range of organisms. During development, the Hh morphogen directs tissue patterning according to a concentration gradient. Lipid modifications on Hh are needed to achieve graded distribution, leading to debate about how Hh is transported to target cells despite being membrane-tethered. Cytonemes in the region of Hh signalling have been shown to be essential for gradient formation, but the carrier of the morphogen is yet to be defined. Here we show that Hh and its co-receptor Ihog are in exovesicles transported via cytonemes. These exovesicles present protein markers and other features of exosomes. Moreover, the cell machinery for exosome formation is necessary for normal Hh secretion and graded signalling. We propose Hh transport via exosomes along cytonemes as a significant mechanism for the restricted distribution of a lipid-modified morphogen.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Exossomos/metabolismo , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/metabolismo , Pseudópodes/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...